

HPER - 4170: Fisiología del Movimiento Humano Prof. Edgar Lopategui Corsino

EP1 U2-01-v01: Bioenergética y Metabolismo Muscular (100 puntos, 1 p c/u)

Nombre:	Núm. Est.:	Fee	cha:
Sección:	Hora de la Clase:	Días:	

PARTE I: Cierto o Falso (25 puntos, 1 punto c/u)

Instrucciones. Lea cada pregunta las siguientes oraciones. Circula la letra C ó F si la oración es Cierta o Falsa, respectivamente.

- C F 1. La energía derivada del *catabolismo del ATP* sirve de *trabajo biológico*, tal como aquella dirigida para la contracción muscular.
- C F 2. El ATP se manufactura mediante el metabolismo aeróbico y anaeróbico.
- C F 3. El metabolismo anaeróbico consiste del sistema de APT-PCr y la glucólisis anaeróbica.
- C F 4. El metabolismo aeróbico se encuentra constituido de la Glucólisis Aeróbica, Ciclo de Krebs y el Sistema de Transporte Electrónico (o de Electrones).
- C F 5. El evento de salto a lo alto, en Pista y Campo, depende principalmente del sistema oxidativo para su provisión de energía.
- C F 6. Los corredores pedestres de larga distancia (Ej: corredores de fondo) deben entrenar enfatizando su sistema metabólico anaeróbico.
- C F 7. La *glucólisis aeróbica* emplea como combustible metabólico de *preferencia* a la *creatina* o el *fosfato* inorgánico.
- C F 8. El *ATP* se produce de *reacciones acopladas*.
- C F 9. El *metabolismo* del organismo humano se compone de dos fases, a saber: el *catabolismo* (libera energía) y el *anabolismo* (utiliza energía).
- C F 10. El nadar 50 metros lisos es un ejemplo de un ejercicio que emplea el metabolismo aeróbico para suministrar el ATP (energía) que requiere tal evento.
- La fosfocreatina (PCr) representa un sustrato que se almacena en los músculos esqueléticos. C F 11.
- C F 12. Aquellos deportes explosivos (Ej: salto a lo largo), que poseen una duración de 3 a 15 segundos, dependerán del sistema de transporte de oxígeno (oxidativo u aeróbico) para el suministro de ATP (energía) que se requiere para ejecutar tales eventos.
- C F 13. La energía derivada del *catabolismo de las proteínas* durante un ejercicio prolongado abarca un 10 a 20% de la energía total.
- Los triglicéridos representan la forma principal en que se almacena las grasas en el tejido C F 14. adiposo, particularmente en las fibras de los músculos esqueléticos.
- El *metabolismo aeróbico* produce al final 32 moléculas de ATP (cuando se cataboliza una C F 15. molécula de glucosa) o 33 moléculas de ATP (cuando se cataboliza una molécula de glucógeno).

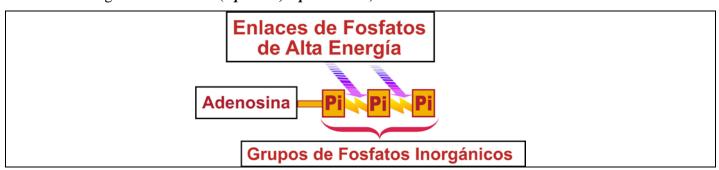
- C F 16. En el sistema de *ATP-PCr*, la *glucosa*, o *glucógeno*, se descompone en *ácido pirúvico* mediante las *enzimas glucolíticas*.
- C F 17. Las enzimas oxidativas aumentan su actividad durante el ejercicio anaeróbico.
- C F 18. La *oxidación de las grasas* se conoce con el nombre de <u>β-oxidación</u> (beta-oxidación).
- C F 19. El *entrenamiento de tolerancia aeróbica* (Ej: corredores pedestres de larga distancia, o fondistas), mejora las capacidades oxidativas en todas la fibras musculares, particularmente las fibras *tipo II*.
- C F 20. El metabolismo oxidativo depende principalmente de un adecuado suministro de oxígeno.
- C F 21. Desde los intestinos, la sangre absorbe los *hidratos de carbono*, consumidos (y digeridos) a través de los alimentos, en la forma de *glucosa*, la cual representa un *monosacárido* (azúcar simple) compuesta de *seis carbonos*.
- C F 22. Los corredores pedestres de *corta* distancia (Ej: velocistas), poseen una mayor cantidad de fibras *tipo I*, más *mitocondrias* y una elevada actividad enzimática muscular de naturaleza oxidativa, en comparación con individuos sedentarios, o que *no entrenan*.
- C F 23. Las *carreras de larga distancia* (aquellas que se corren a una intensidad de 80% o más del VO₂máx) [capacidad máxima]) dependen de la *fosfocreatina* (particularmente la *creatina muscular*) como combustible metabólico preferido que provee energía para dichas carreras.
- C F 24. Bajo aquellas circunstancias particulares de ejercicio o actividades deportivas, los tejidos activos (Ej: músculos esqueléticos) satisfacen su demanda de energía (ATP) del *glucógeno* almacenado en el *citoplasma/sarcoplasma* de las células/fibras musculares.
- C F 25. Por el otro lado, bajo demandas energéticas específicas del ejercicio, los requisitos de combustible metabólico (Ej: glucosa) se suple mediante la *descomposición del glucógeno almacenado en el <u>hígado</u>. Consecuentemente, la glucosa se transporta por la circulación hacia los tejidos activos, desde donde se metaboliza.*

PARTE II: Selección Múltiple (15 puntos, 1 puntos c/u)

Instrucciones. Lea cada pregunta y contesta cuidadosamente, colocando la letra correspondiente al lado del número.

1. Toda <i>energía</i> se deriva del	sol, en la forma de energía:	
a. Luninosa	b. Mecánica	c. Química
2. Los principales	del cuerpo son los hidratos de carb	ono, grasas y proteínas:
a. Citratos	b. Sustratos	c. Fosfatos
se c	omponen de una molécula de glicerol y 3 m	noléculas de ácidos grasos:
a. Hidratos de carbono	b. Triglicéridos	c. Aminoácidos
4. La puede	resultar del exceso de glucosa en la sangre:	
a. Lipogénesis	b. Deaminación	c. Glucólisis

5. Las reservas de <u>grasa</u>	pueden proveer más de	kilocalorías de energía:		
a. 20,000	b. 50,000	c. 70,000		
kil	ratos de carbono en el hígado y músculos en localorías de energía, o el equivalente de ala rera pedestre de larga distancia:	-		
a. 2,500-2,600	b. 1,500-2,000	c. 3,500-4,800		
_	de también ser utilizada como una <i>fuente <u>m</u></i> rimero se tiene que convertir en glucosa:	<u>eenor</u> de energía bajo algunas		
a. Proteína	b. Fosfocinasa	c. Lipasa		
La fuente de <i>energía</i> incluyendo la contrac	inmediata para casi todas las actividades mo	etabólicas del organismo humano,		
a. ATP	b. ADP	c. AMD		
	energía (aproximadamenteones estándares, pero posiblemente hasta 10 entro de la célula): b. 5.4			
0. El sistema oxidativ	vo involucra el rompimiento del sustrato con	rrespondiente, en la presencia de		
a. Piruvato	b. Lactato	c. Oxígeno		
 Cada gramo de hid 	lratos de carbono y de proteína proveen	kilocalorías:		
a. 4.1	b. 9.4	c. 5.1		
r		s, o catabolizadada de las reservas de glucógeno, la a forma en que los hidrato de carbono viajan por la sangre y son a:		
a. Glucosa	b. Maltosa	c. Fructosa		
	dad inicial de energía y al catalizar varios p	ueden acelerar las reacciones generales de la tasa metabólica al ial de energía y al catalizar varios pasos a lo largo de las vías		
a. Creatinas	b. Enzimas	c. Dehidrogenasas		
esqueléticos, puede	combinación de la <i>Adenosina Trifosfatada</i> y los almacenes de <i>fosfocreatina</i> en los músculos neléticos, pueden sostener las necesidades de energía de los músculos activos solamente:			
a. 3-15 minutos	b. 3-15 milisegundos	c. 3-15 segundos		


(cc) BY-	-No-No Saludmed 2014, por <u>Edgar Lopategui Corsino</u> , se encuentra bajo una	licencia CC: " <u>Creative Commons</u> "
	 La mayoría de los <i>maratonistas</i> son capaces de almacenar 2,0 glucógeno, dentro de sus almacenes musculares y hepáticos (la proveer energía durante aproximadamente, de 	hígado), lo cual es suficiente para
	a. 20 millas b. 10 millas	c. 26 millas
	PARTE III: Pareo (40 puntos, 2 punto	s c/u)
Instru	cciones. Coloca la letra correspondiente en la fila izquierda.	
1.	Componentes de los <i>triglicéridos</i> . Forma en que viaja por la sangre las grasas, para que eventualmente se incorpore en los procesos oxidativos.	a. Una <i>caloría</i>
2.	Tipo de hidrato de carbono, clasificado como <i>polisacárido</i> o <i>azúcar <u>compleja</u></i> , pues se compone de <i>polímeros de glucosa</i> , es decir, de cadenas largas de glucosa. Representa el estado químico en que se <i>almacenan los hidratos de carbono</i> en el cuerpo, principalmente en los <i>músculos esqueléticos</i> e <i>higado</i> .	b. Glucosa
3.	<u>Todas</u> las <i>reacciones químicas</i> que se llevan a cabo en el organismo humano, las cuales resultan de la descomposición de las sustancias nutricias consumidas en la dieta.	c. Ácidos grasos libres
4.	El proceso por el cual el cuerpo descompone los sustratos con la <i>ayuda de oxígeno</i> , con el fin de producir energía.	d. Hidrato de carbono
5.	Proceso metabólico mediante el cual se <i>sintetiza el glucógeno a partir de la glucosa</i> ; el glucógeno se almacena en los músculos esquelético y en el hígado, hasta así que lo requiera el organismo humano.	e. Ciclo de Krebs
6.	Compuestos <i>sobre el cual actúa una <u>enzima</u></i> , tal como los son los tres principales combustibles metabólicos del cuerpo.	f. Lipólisis
7.	Proceso mediante el cual las vías metabólicas, que se llevan a cabo en las células corporales, convierten los sustratos en energía cinética, de manera que puedan ser empleados como <i>trabajo biológico útil</i> por las células del organismo humano.	g. Glucogénesis
8.	El proceso de convertir la proteína en ácidos grasos.	h. Enzimas
9.	El estado químico (forma compleja) en que se <i>almacenan las grasas</i> en el adipocito, formando el tejido adiposo.	i. Glucogenólisis
10.	. Fase, o proceso, del metabolismo que utiliza energía, encargada de <i>sintetizar los sustratos</i> (compuestos químicos), derivado de moléculas más pequeñas, mediante la acción de una enzima.	j. Respiración celular
11.	. La cantidad de calor requerido para <i>elevar un gramo de agua a un grado centígrado</i> , de 14.5 °C a 15.5 °C.	k. Bioenergética
12.	. <i>Principal <u>sustrato</u></i> , o <i>combustible metabólico</i> , para el ejercicio y eventos deportivos, el cual se metaboliza través	L. Anabolismo

de la *glucólisis*. (en la forma de glucosa o glucógeno).

PARTE V: Identifique (6 puntos, 2 puntos c/u)

Instrucciones. Rotule/identifica las siguientes ilustraciones:

1. Rotula la siguiente molécula (6 puntos, 2 puntos c/u):

